Publication:
Influence of Redox Couple on the Performance of ZnO Dye Solar Cells and Minimodules with Benzothiadiazole-Based Photosensitizers

Loading...
Thumbnail Image
Publication date
2022-11-08
Reading date
Event date
Start date of the public exhibition period
End date of the public exhibition period
Advisors
Authors of photography
Person who provides the photography
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Export
Research Projects
Organizational Units
Journal Issue
Abstract
ZnO-based dye-sensitized solar cells exhibit lower efficiencies than TiO2-based systems despite advantageous charge transport dynamics and versatility in terms of synthesis methods, which can be primarily ascribed to compatibility issues of ZnO with the dyes and the redox couples originally optimized for TiO2. We evaluate the performance of solar cells based on ZnO nanomaterial prepared by microwave-assisted solvothermal syn- thesis, using three fully organic benzothiadiazole-based dyes YKP- 88, YKP-137, and MG-207, and alternative electrolyte solutions with the I−/I3−, Co(bpy)32+/3+, and Cu(dmp)21+/2+ redox couples. The best cell performance is achieved for the dye−redox couple combination YKP-88 and Co(bpy)32+/3+, reaching an average −− efficiency of 4.7% and 5.0% for the best cell, compared to 3.7% and 3.9% for the I /I3 couple with the same dye. Electrical impedance spectroscopy highlights the influence of dye and redox couple chemistry on the balance of recombination and regeneration kinetics. Combined with the effects of the interaction of the redox couple with the ZnO surface, these aspects are shown to determine the solar cell performance. Minimodules based on the best systems in both parallel and series configurations reach 1.5% efficiency for an area of 23.8 cm2.
Doctoral program
Related publication
Research projects
Description
Bibliographic reference
ACS Applied Energy Materials, Vol. 5, p. 14092-14106.
Photography rights