Role of ABA in the adaptive response of Arabidopsis plants to long-term boron toxicity treatment

Thumbnail Image
Publication date
Reading date
Event date
Start date of the public exhibition period
End date of the public exhibition period
Authors of photography
Person who provides the photography
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Journal Issue
Boron (B) toxicity causes impairments in several plant metabolic and physiological processes. Under conditions of excessive B availability, this micronutrient is passively transported through the transpiration stream and accumulates in leaves, causing the development of necrotic regions in leaf tips. Some plants have developed adaptive mechanisms to minimize the toxic effects of excessive B accumulation in their tissues. Thus, for instance, in Arabidopsis it has been described an ABA-dependent decrease in the transpiration rate that would restrict B accumulation in aerial plant tissues in response to short-term B toxicity, this effect being mediated by AtNCED3 (which encodes a key enzyme for ABA biosynthesis). The present work aimed to study the possible involvement of ABA in the adjustment of plant water balance and B homeostasis during the adaptive response of Arabidopsis to prolonged B toxicity. For this purpose, Arabidopsis wild-type and the ABA-deficient nced3-2 mutant plants were subjected to B toxicity for 7 days. We show that ABA-dependent stomatal closure is determinant for the adjustment of plant water relations under conditions of prolonged B toxicity. Results suggest that, in addition to the AtNCED3 gene, the AtNCED5 gene could also be involved in this ABA-dependent stomatal closure. Finally, our results also indicate the possible role of endogenous root ABA content in the mechanism of active efflux of B via BOR4 (efflux-type B transporter) from the root to the external environment under excess B conditions.
Doctoral program
Related publication
Research projects
Bibliographic reference
Plant Physiol Biochem. 202:107965
Photography rights