• español
    • English
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   RIO Principal
  • PUBLICACIONES UPO
  • Revistas UPO
  • Revista de Métodos Cuantitativos para la Economía y la Empresa
  • RevMetCuant Vol. 03 (junio de 2007)
  • Ver ítem
  •   RIO Principal
  • PUBLICACIONES UPO
  • Revistas UPO
  • Revista de Métodos Cuantitativos para la Economía y la Empresa
  • RevMetCuant Vol. 03 (junio de 2007)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelo no lineal basado en redes neuronales de unidades producto para clasificación. Una aplicación a la determinación del riesgo en tarjetas de crédito // Non-linear model for classification based on product-unit neural networks. An application to determine credit card risk

Ver/
2064-6545-1-SM.pdf (400.1Kb)
URI
http://hdl.handle.net/10433/3587
Exportar
RefworksMendeleyEndNote
Compartir
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autoría
Martínez-Estudillo, Francisco José; Hervás-Martínez, C.; Torres Jiménez, Mercedes; Martínez-Estudillo, A. C.
Palabras clave
Clasificación
redes neuronales de unidades producto
redes neuronales evolutivas
classification
product unit neural networks
evolutionary neural networks
Fecha de publicación
2007
Resumen
El principal objetivo de este trabajo es mostrar un tipo de redes neuronales denominadas redes neuronales basadas en unidades producto (RNUP) como un modelo no lineal que puede ser utilizado para la resolución de problemas de clasificación en aprendizaje. Proponemos un método evolutivo en el que simultáneamente se diseña la estructura de la red y se calculan los correspondientes pesos. La metodología que presentamos se basa, por tanto, en la combinación del modelo no lineal RNUP y del algoritmo evolutivo; se aplica a la resolución de un problema de clasificación de índole económica, surgido del mundo de las finanzas. Para evaluar el rendimiento de los modelos de clasificación obtenidos, comparamos nuestra propuesta con varias técnicas clásicas, como la regresión logística o el análisis discriminante, y con el clásico modelo de perceptrón multicapa de redes neuronales basado en unidades sigmoides y el algoritmo de aprendizaje de retropropagación (MLPBP).----------------------------- ...
El principal objetivo de este trabajo es mostrar un tipo de redes neuronales denominadas redes neuronales basadas en unidades producto (RNUP) como un modelo no lineal que puede ser utilizado para la resolución de problemas de clasificación en aprendizaje. Proponemos un método evolutivo en el que simultáneamente se diseña la estructura de la red y se calculan los correspondientes pesos. La metodología que presentamos se basa, por tanto, en la combinación del modelo no lineal RNUP y del algoritmo evolutivo; se aplica a la resolución de un problema de clasificación de índole económica, surgido del mundo de las finanzas. Para evaluar el rendimiento de los modelos de clasificación obtenidos, comparamos nuestra propuesta con varias técnicas clásicas, como la regresión logística o el análisis discriminante, y con el clásico modelo de perceptrón multicapa de redes neuronales basado en unidades sigmoides y el algoritmo de aprendizaje de retropropagación (MLPBP).------------------------------------The main aim of this work is to show a neural network model called product unit neural network (PUNN), which is a non-linear model to solve classification problems. We propose an evolutionary algorithm to simultaneously design the topology of the network and estimate its corresponding weights. The methodology proposed combines a non-linear model and an evolutionary algorithm and it is applied to solve a real economic problem that occurs in the financial management. To evaluate the performance of the classification models obtained, we compare our approach with several classic statistical techniques such us logistic regression and linear discriminat analysis, and with the multilayer perceptron neural network model based on sigmoidal units trained by means of Back-Propagation algorithm (MLPBP).
Colecciones
  • RevMetCuant Vol. 03 (junio de 2007) [4]

BIBLIOTECA CRAI  ©  2015 Universidad Pablo de Olavide
Contacto | Aviso legal
 

 

Listar

Todo RIOComunidades y coleccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

De interés

AyudaPreguntas frecuentesDepositar documentosPolíticasDerechos de autorNormativa

BIBLIOTECA CRAI  ©  2015 Universidad Pablo de Olavide
Contacto | Aviso legal