Remarks on the determination of the Landau gauge OPE for the Asymmetric three gluon vertex

F. De Sotoa, J. Rodríguez-Quinterob

aDpto. de Física Atómica, Molecular y Nuclear
Universidad de Sevilla, Apdo. 1065, 41080 Sevilla, Spain
bDpto. de Física Aplicada e Ingeniería eléctrica
E.P.S. La Rábida, Universidad de Huelva, 21819 Palos de la fr., Spain

Abstract

We compute a compact OPE formula describing power corrections to the perturbative expression for the asymmetric \(\tilde{\text{MOM}}\)-renormalized running coupling constant up to the leading logarithm. By the use of the phenomenological hypothesis leading to the factorization of the condensates through a perturbative vacuum insertion, the only relevant condensate in the game is \(\langle A^2 \rangle\). The validity of the OPE formula is tested by searching for a good-quality coherent description of previous lattice evaluations of \(\tilde{\text{MOM}}\)-renormalized gluon propagator and running coupling.

That the running coupling constant can be extracted from the three-gluon vertex in the Landau gauge was proposed several years ago in a seminal work \cite{1}. This method appears closer to a physical interpretation than Schrödinger functional’s \cite{2} but, and mainly for the same reason, more systematic effects should be managed to produce a reliable prediction for the perturbative \(\alpha_S\). In particular, the first statistically meaningful attempts to follow that method missed the impact of power corrections\cite{3} and failed to give an estimate for the coupling constant comparable to others in literature (that of ref. \cite{2}, for instance). In parallel, these power corrections to the gluon propagator and to the running coupling constant have been largely studied in the last years\cite{4,5}.

Although the first trials were rather inconclusive\cite{6}, momentum power contributions have been manifestly put in evidence\cite{7,8} for the Landau gauge three-gluon coupling constant renormalized in both symmetric (MOM) and asymmetric (\(\tilde{\text{MOM}}\)) momentum subtraction schemes. In ref. \cite{7} the parameter \(\Lambda_{\text{MS}}\) is estimated from the matching of \(\text{MOM}\) \(\alpha_S\) lattice results to a perturbative three-loop formula corrected by an unavoidable \(1/p^2\)-term. This naive ansatz used in ref. \cite{7} seems to eliminate most of the systematic deviation from the three-gluon vertex estimate of the perturbative \(\alpha_S\) and a precise prediction of \(\Lambda_{\text{MS}}\) emerges in full agreement with that of ref. \cite{2}. Unfortunately, the errors quoted in this work were clearly underestimated. In fact, the prediction of \(\Lambda_{\text{MS}}\) is so sensitive to a logarithmic dependence on the momentum scale of the coefficient of \(1/p^2\) that it appears to range over an interval of 40 MeV\cite{9}.
On the other hand, in refs. [3,4] a description in terms of OPE for the power corrections to MOM three-gluon α_S is successfully tried consistently with an analogous description for gluon propagator. The OPE approach provides through SVZ factorization[10] a perturbative tool to obtain the leading logarithmic dependence of non-trivial Wilson coefficients. In particular, it can be applied to compute the coefficient of A^2 in the MOM case for Landau gauge three-gluon coupling constant[4]. Obviously, the expectation value of A^2 in a non-perturbative vacuum is also estimated via this OPE approach. A non gauge invariant condensate, that, being in Landau gauge, is invariant under infinitesimal gauge transformations and thus connected in some way to the gauge invariant $\langle A^2_{\text{min}} \rangle$ defined in [1], is then computed.

The same approach for MOM coupling constant requires to use

$$T^* \left(\tilde{A}_\mu^a(-p)\tilde{A}_\nu^b(p) \right) = (c_0)^{ab}_{\mu\nu}(p) 1 + (c_1)^{ab\nu'}_{\mu\rho\nu}(p) : A^a_{\mu'}(0) A^b_{\nu'}(0) : + (c_2)^{ab\nu'\nu''}_{\mu\rho\nu\nu'}(p) : A^a_{\mu'}(0) A^b_{\nu'}(0) A^c_{\nu''}(0) : + \ldots ;$$

(1)

where the expansion to the three-gluon local operator is necessary because the three-point Green function in MOM can be written as

$$\langle T^* \left(\tilde{A}_\mu^a(-p)\tilde{A}_\nu^b(p)\tilde{A}_\rho^c(0) \right) \rangle_{\text{NP}} \equiv \langle 0|T^* \left(\tilde{A}_\mu^a(-p)\tilde{A}_\nu^b(p) \right)|g^c_\rho\rangle_{\text{NP}} = (c_1)^{ab\nu'}_{\mu\rho\nu} \langle 0| : A^a_{\mu'}(0) : |g^c_\rho\rangle_{\text{NP}} + (c_2)^{ab\nu'\nu''}_{\mu\rho\nu\nu'} \langle 0| : A^a_{\mu'}(0) A^b_{\nu'}(0) A^c_{\nu''}(0) : |g^c_\rho\rangle_{\text{NP}} + \ldots .$$

(2)

The index NP refers to the non-perturbative nature of the vacuum state in Eq. (2), while T^* refers to the standard time ordered product in momentum space. It should be noticed that: i) No other local operators with the same dimension of A^2 are written in Eq. (1) because, unlike the identity or A^2 itself, they do not generate non-null vacuum expectation value (v.e.v.); ii) Operators other than the three-gluon local one for the same dimension, as $\partial_\mu A^a_\mu(0) A^c_\rho(0)$, do not appear explicitly because they are phenomenologically supposed not to survive, as will be argued below. The identity and A^2 clearly do not contribute to the matrix element considered in Eq. (2)

Following standard SVZ techniques to obtain the perturbative expansion of OPE Wilson coefficients, we compute the appropriated matrix element of Eq. (1)'s l.h.s. to the wanted order. It is immediate that taking the perturbative vacuum leads to

$$\langle 0|T^* \left(\tilde{A}_\mu^a(-p)\tilde{A}_\nu^b(p)\tilde{A}_\rho^c(0) \right)|0\rangle = (c_1)^{ab\nu'}_{\mu\rho\nu} \tilde{G}^{(2)}\mu\nu_{\rho}(0),$$

(3)

where c_1 can be straightforwardly identified with the perturbative expansion for Green Function with an amputated soft-gluon leg,

$$\Gamma^{ab\nu'}_{\mu\nu\rho}(p, -p, 0) \equiv -2p^{a'} \cdot g^c_{\mu\nu}(p) f^{ab\nu'}_{a'} G^{(3)}_{\text{pert}}(p^2),$$

(4)

\footnote{No Lorentz invariant tensor with an odd number of indices can be built without non-zero momenta.}
which should be proportional to its Landau gauge tree-level tensor. Beyond this purely perturbative first contribution, the situation is a bit more complicated. We consider now the matrix element in the l.h.s. of Eq. (2) between two external soft gluons and the perturbative vacuum. Then, we obtain up to the considered order in perturbation theory

$$\langle 0 | T^* \left(\widetilde{A}_\mu^a(-p)\widetilde{A}_\nu^b(p)\widetilde{A}_\rho^c(0) \right) | g_\Lambda g_\sigma \rangle_{\text{connected}} = (c_3)^{ab\mu'\nu'\rho'} (p) \langle 0 | : A_{\mu'}^a(0)A_{\nu'}^b(0)A_{\rho'}^c(0) : | g_\rho g_\Lambda g_\sigma \rangle .$$

For the matrix element in the r.h.s. we have

$$\langle 0 | : A_{\mu'}^a(0)A_{\nu'}^b(0)A_{\rho'}^c(0) : | g_\rho g_\Lambda g_\sigma \rangle = \frac{G^{(2)}_{ss'}(0)}{G^{(2)}_{\sigma\lambda'}(0) G^{(2)}_{\lambda\nu'}(0) G^{(2)}_{\mu\rho'}(0)} \left\{ \mathcal{P}_{\sigma\lambda'}^{s'll} g_{\mu'}^{s'} g_{\nu'}^{l'} g_{\rho'}^{t'} \delta^{l'l'} \delta^{l'l'} + O(\alpha) \right\} ,$$

where \(\mathcal{P} \) refers to all the possible permutation of the couples \((\sigma', s'), (\lambda', l'), (\tau t)\). The Wilson coefficient \(c_3\) may thus be computed at tree-level order as:

$$\mathcal{P}_{\sigma\lambda'}^{s'll} (c_3)^{ab\sigma'\lambda'_{\tau}} = \frac{\langle \widetilde{A}_\lambda^a(0)\widetilde{A}_\mu^b(-p)\widetilde{A}_\nu^c(p)\widetilde{A}_\rho^c(0)\widetilde{A}_\sigma^c(0) \rangle}{G^{(2)}_{ss'}(0) G^{(2)}_{\sigma\lambda'}(0) G^{(2)}_{\lambda\nu'}(0) G^{(2)}_{\mu\rho'}(0)} .$$

The ratio in Eq. (7) represents symbolically all the tree-level diagrams with five gluon legs where the three of them carrying zero momentum are cut (See fig. 1).

Figure 1: Diagrams contributing to the tree-level Wilson coefficient in Eq. (7). Crosses mark the soft gluon legs coming from the condensate.

Had we directly dealt with the three-gluon local operator \(: A_{\mu'}^a(0)A_{\nu'}^b(0)A_{\rho'}^c(0) : \), the evaluation of the higher order tensors involved would require a much more tedious calculation. On the other hand, the *vacuum insertion* between one gluon field and the other two leads to

$$\left[\langle 0 | : A_{\mu'}^a(0)A_{\nu'}^b(0)A_{\rho'}^c(0) : | g_\rho \rangle_{NP} \right]_{R_{\mu \rho}} = \frac{\langle A^2 \rangle_{R_{\mu \rho}} \widetilde{G}^{(2)}_{\tau \rho}(0, \mu^2)}{4(N_c^2 - 1)} T_{\mu'\nu'\rho' t}^{a'b'c'\tau}$$

with

$$T_{\mu'\nu'\rho' t}^{a'b'c'\tau} = g_{\mu'\nu'} \delta^{\mu'\nu'} g_{\rho'\tau} \delta^{\rho'\tau} + g_{\mu'\rho'} \delta^{\mu'\rho'} g_{\nu'\delta} \delta^{\nu'\delta} + g_{\rho'\nu'} \delta^{\rho'\nu'} g_{\mu'\delta} \delta^{\mu'\delta} .$$

We may phenomenologically assume vacuum insertion to work for a certain renormalization momentum scale. Thus, the following replacement

\[: A^\prime_{\mu}(0) A^\prime_{\nu}(0) A^\prime_{\rho}(0) : \rightarrow \frac{A^2 A^\prime_c(0)}{4(N_c^2 - 1)} T^\prime_{\mu\nu\rho\tau} \]

(10)
can be done for Eq. (3), the other components of the tensor in l.h.s. not being required for our purposes. Furthermore the local gluon field \(A^\prime_c(0) \) is to be contracted with the zero-momentum gluon field defined for the vertex. The same vacuum insertion assumption leads us to argue that, for instance,

\[\left[\langle 0 : \partial_\mu A^\prime_{\mu}(0) A^\prime_{\nu}(0) : | g^c\rangle_{\text{NP}} \right]_{R,\mu} \rightarrow \langle \partial_\mu A^\prime_{\mu}(0) \rangle_{R,\mu} \tilde{G}^\prime_{\mu\nu}(0, \mu^2) = 0 . \]

(11)

Then, the only non-zero surviving condensate comes from the three-gluon local operator.

It is easy to see that, using Eq. (10), the relevant coefficient multiplying the local operator in Eq. (1) is

\[(c_3)^{ab\prime\nu\prime\rho\prime}(p) T^\prime_{\mu\nu\rho\tau} = \frac{1}{2} \frac{\langle \widetilde{A}^a(0) \widetilde{A}^b(0) \widetilde{A}^c(0) \rangle}{G^{(2)}_{\ast\mu\nu}(0) \widetilde{G}^{(2)}_{\ast\rho\tau}(0)} \delta^{\mu\nu\rho\tau} \]

(12)

where the r.h.s. may be straightforwardly obtained from Eq. (4). This last Eq. (12) gives the prescription in which Lorentz and color indices of external gluon legs are contracted in the diagrams contributing to the tree-level Wilson coefficient (see Fig. 1).

Thus, since Eq. (4)’s is the only Landau gauge tensor for the asymmetric three-gluon vertex, we can write for \(p^2 = -k^2 \)

\[k^4 \langle T^\ast \left(\widetilde{A}_\mu(0) \widetilde{A}_\nu^\prime(p) \widetilde{A}_\rho(0) \right) \rangle_{\text{NP}} = -2p^\tau g^\perp_{\mu\nu}(p) f_{ab\prime\rho\prime} \times \left(c_1 \left(g, \frac{k^2}{\Lambda^2} \right) \tilde{G}^{(2)}_{\ast\tau\mu}(0) + c_3 \left(g, \frac{k^2}{\Lambda^2} \right) \frac{\langle A^2 A^\prime_c(0) : | g^c\rangle_{\text{NP}}}{4(N_c^2 - 1)} \right) . \]

(13)

We know the scalar coefficients \(c_1, c_3 \) in Eq. (13) to be dimensionless by OPE power counting rules, and hence both only depend on the bare coupling \(g \) and the dimensionless ratio of momentum over regularization scale \(\frac{k^2}{\Lambda^2} \). The term \(c_1 \) can be obtained from Eq. (3) and, at tree-level, \(c_3 \) is to be computed by projecting over the Landau gauge tree-level tensor in Eq. (1) the result from Eq. (12),

\[c_{3,\text{tree-level}} \left(g, \frac{k^2}{\Lambda^2} \right) = (c_3)^{ab\nu\prime\rho\prime}(p) T^\prime_{\mu\nu\rho\tau} \frac{1}{-6N_C(N_C - 1)k^2 \pi \mu^\perp\nu^\perp f_{ab\prime\rho\prime}} = 3g. \]

(14)

If we renormalize following the \(\text{MOM} \) prescription at momentum scale \(\mu^2 \), and then apply the assumed vacuum insertion factorization, we can write:

\footnote{The dependence on regularization momentum scale (\(a^{-1} \) in lattice regularization or \(\varepsilon^{-1}\mu \) in dimensional, for instance) has been up to now omitted to simplify the notation.}
\[
\begin{align*}
&k^4 \left[\langle T^a (\tilde{A}_\mu(p) \tilde{A}_\nu(p) \tilde{A}_\rho(0)) \rangle \right]_{R, \mu^2} = -2p^\mu g_\mu^a(p) f_{ab}^c G^{(2)_{\tau\rho}}(0, \mu^2) \\
&\times \left(c_1 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) + c_3 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) \langle A_2^2 \rangle_{R, \mu^2} \frac{1}{4(N_c^2 - 1)} \frac{1}{-k^2} \right) .
\end{align*}
\]

where, after renormalization, Wilson coefficients depend on the ratio of the momentum and the renormalization scale, and on \(\alpha(\mu) = g_R^2(\mu)/(4\pi) \), i.e. the coupling constant consistently renormalized in \(\text{MOM} \).

In the MOM scheme, renormalized Green functions take formally, at the renormalization scale, the same tree-level value but in terms of the renormalized coupling constant instead of the bare one. This defines \(Z_{\text{MOM}}(\mu) = \mu^2 G^{(2)}(\mu^2) \) to renormalize appropriately the two-point Green function, where \(G^{(2)} \) is the scalar factor of the bare two-point Green function defined in ref. [3]. The three-gluon Green function is then renormalized dividing by \((Z_{\text{MOM}}(\mu))^{3/2} \). One gets

\[
g_R(k^2) = k^4 \frac{G_R^{(3)}(k^2, \mu^2)}{G_R^{(2)}(0, \mu^2)} \left(k^2 G_R^{(2)}(k^2, \mu^2) \right)^{-1/2} .
\]

The renormalized scalar factor for the three-gluon Green function with an amputated soft-gluon, \(G_R^{(3)}/G_R^{(2)} \), can be projected out from Eq. (15), similarly to what is done for \(c_3 \) in Eq. (14), while for \(G_R^{(2)}(k^2, \mu^2) \) we can write

\[
k^2 G_R^{(2)}(k^2, \mu^2) = c_0 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) + c_2 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) \frac{\langle A_2^2 \rangle_{R, \mu^2}}{4(N_c^2 - 1)} \frac{1}{-k^2} ,
\]

where the scalar coefficients \(c_0 \) and \(c_2 \) can be derived from those in Eq. (10) and computed similarly to \(c_1 \) and \(c_3 \), as explained in ref [9]. Thus, after replacing in Eq. (16) we will finally get:

\[
g_R(k^2) = c_1 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) \left[c_0 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) \right]^{-1/2} \\
\times \left(1 + \frac{c_3 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right)}{c_1 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right)} - \frac{1}{2} \frac{c_2 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right)}{c_0 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right)} \frac{\langle A_2^2 \rangle_{R, \mu^2}}{4(N_c^2 - 1)} \frac{1}{-k^2} \right) .
\]

The purpose is now to compute to leading logarithms the subleading Wilson coefficients in Eq. (15), as done in ref. [8]. It will be, to this goal, useful to consider the following operator expansion,

\[
\begin{align*}
&\frac{2}{9k^2} p_T g_\mu^{1\mu}(p) f_{ab}^t \left[T^a \left(\tilde{A}_\mu(-p) \tilde{A}_\nu(p) \tilde{A}_\rho(0) \right) \right]_{R, \mu^2} \\
&= \frac{c_3 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right)}{-k^6} \left[A^2 A^2_{\tau}(0) : \tilde{A}_\rho^2(0) \right]_{R, \mu^2} + \ldots ;
\end{align*}
\]

(19)
where dots refer to terms with powers of $1/k$ other than 6. If the vacuum expectation in the non-perturbative vacuum is considered for the r.h.s. of Eq. (19), the result under the vacuum insertion hypothesis is known to be diagonal in color and Lorentz spaces. Then we will contract in both sides of Eq. (19) with $g^{\rho\tau}\delta_{ct}$ and we will take the following matrix element (see ref. [14])

$$
\frac{2}{9k^2} p^\rho g^{\lambda\mu\nu}(p)_{fabc} \langle 0| T^\ast \left(\tilde{A}_\mu^a(-p) \tilde{A}_\nu^b(p) \tilde{A}_\rho^c(0) \right) | g_\sigma^a g_\lambda^b \rangle_{R, \mu^2} = c_3 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) \left(0 : A^2 A^a_\nu(0) : g_\sigma^a g_\lambda^b \right)_{R, \mu^2} + \cdots ;
$$

(20)

where we take external gluons in a perturbative vacuum and carrying soft momenta. From Eq. (20) we get

$$
-\frac{2}{9} k^4 \frac{p^\rho g^{\lambda\mu\nu}(p)_{fabc} \langle 0| T^\ast \left(\tilde{A}_\mu^a(-p) \tilde{A}_\nu^b(p) \tilde{A}_\rho^c(0) \right) | g_\sigma^a g_\lambda^b \rangle}{\langle 0 : A^2 A^a_\nu(0) : g_\sigma^a g_\lambda^b \rangle} = Z_3(\mu^2) Z^{-1}(\mu^2) c_3 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) = Z_3^{-1/2}(\mu^2) \bar{Z}^{-1} \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right)
$$

(21)

where, always in the MOM prescription, $\tilde{A}_R = Z_3^{-1/2} \tilde{A}$ and Z_A^2 is defined such that

$$
\left[: A^2 A^a_\nu(0) : \tilde{A}^c_\rho(0) \right]_{R, \mu^2} = Z_3^{-1}(\mu^2) Z_3^{-1/2}(\mu^2) : A^2 A^a_\nu(0) : \tilde{A}^c_\rho(0) ;
$$

(22)

while $\bar{Z} \equiv Z_A^2 Z_3^{-3/2}$ is an useful notation for the constant renormalizing the matrix element for the three-gluon local operator where the external soft gluons are explicitly cut. If we recover the divergent factor $\bar{Z} \equiv Z_A^2 Z_3^{-1}$ introduced in ref. [3] for the matrix element of two-gluon local operator coming from proper vertex corrections, \bar{Z} can be thought to be decomposed as

$$
\bar{Z}(\mu^2) \equiv \bar{Z}(\mu^2) Z_\kappa(\mu^2),
$$

(23)

where \bar{Z} takes the divergent part coming from the diagrams for the matrix element in r.h.s. of Eq. (20) which can be factorized (diagrams (a,b) of fig. 2) as in Eq. (8), and Z_κ should be computed from those which can not (diagrams (c,d) of fig. 2).

Then, taking the logarithmic derivatives with respect to μ in both sides of Eq. (21), we get the following renormalization group differential equation:

$$
\left\{ -2\gamma(\alpha(\mu)) - \gamma(\alpha(\mu)) + \frac{\partial}{\partial \ln \mu} + \beta(\alpha(\mu)) \frac{\partial}{\partial \alpha} \right\} c_3 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) = 0 ;
$$

(24)

with the formal solution (see ref. [12])

$$
c_3 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) = c_3 (1, \alpha(k)) \left(\frac{\alpha(k)}{\alpha(\mu)} \right)^{-\frac{\gamma_k}{\beta_0}} ,
$$

(25)
Figure 2: All the possible leg permutations from diagrams in the figure contribute to the renormalization constant \bar{Z} defined in the text. (a) and (b)-like diagrams, which do not break the assumed-to-work factorization hypothesis, are renormalized by \hat{Z} previously computed in [9]. (c) and (d) breaking factorization diagrams give Z_κ. The local operators are drawn as gray bullets, the two of them joined by a dashed line represent the ones contracted to give A^2 in Eqs. (19-22) through the replacement in Eq. (10).

where

$$
\gamma_0 = \frac{\alpha(\mu)}{4\pi} + \ldots,
$$

$$
\gamma = \frac{d}{d\ln\mu^2} \ln Z_3(\mu^2) = -\left(\gamma_0 \frac{\alpha(\mu)}{4\pi} + \gamma_1 \left(\frac{\alpha(\mu)}{4\pi} \right)^2 + \gamma_2 \left(\frac{\alpha(\mu)}{4\pi} \right)^3 + \ldots \right),
$$

$$
\beta \left(\frac{\alpha(\mu)}{4\pi} \right) = \frac{d}{d\ln\mu^2} \alpha(\mu) = -\left(\frac{\beta_0}{2\pi} \alpha^2(\mu) + \frac{\beta_1}{4\pi^2} \alpha^3(\mu) + \frac{\beta_2}{(4\pi)^3} \alpha^4(\mu) + \ldots \right). \quad (26)
$$

The boundary condition of Eq. (24) is given by our MOM-like prescription for the renormalization of the condensate by Z_{A^3}: the condensate is renormalized such that the Wilson coefficient takes the tree-level form at the renormalization point. Thus the prefactor $c_3(1, \alpha(k))$ has to be matched at tree-level to Eq. (14), and the only solution to the leading logarithm is

$$
c_3(1, \alpha(k)) = 3 \left(g_R(k) \right)^3 \left[1 + \mathcal{O} \left(\frac{1}{\log (k/\Lambda_{QCD})} \right) \right]. \quad (27)
$$

Identifying the non-power-corrected term of Eq. (18) to the purely perturbative coupling constant, $c_1 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right)$ is known to be
\[c_1 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) = g_{\text{R, pert}}(k^2) \left[c_0 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) \right]^{1/2}. \]

(28)

Thus, we take from ref. [9] the following leading order results:

\[c_0 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) = \left(\frac{\alpha(k)}{\alpha(\mu)} \right)^{\frac{\gamma_0}{\beta_0}}, \]
\[c_2 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) = 3g_{\text{R}}^2(k^2) \left(\frac{\alpha(k)}{\alpha(\mu)} \right)^{-\frac{\gamma_0}{\beta_0}}, \]

(29)

where, as usual, \(\gamma_0 \) is defined by

\[\frac{d}{d \ln \mu^2} \ln \tilde{Z}(\mu^2) = -\gamma_0 \frac{\alpha(\mu)}{4\pi} + \ldots. \]

(30)

Eq. (18) can be then applied to obtain \(\alpha_{\text{MOM}} = g_{\text{R}}^2/(4\pi) \) which, after the appropriate Wick rotation takes in Euclidean space the following form:

\[\alpha_{\text{MOM}}(k^2) = \alpha_{\text{pert}}(k^2) \left\{ 1 + \frac{T(\mu)}{k^2} \left[\ln \left(\frac{k}{\Lambda} \right) \right]^\frac{\gamma_0}{\beta_0} - 1 \right\} \]

(31)

with

\[T(\mu) = \frac{6\pi^2}{\beta_0 N_c^2 - 1} \left[\ln \left(\frac{\mu}{\Lambda} \right) \right]^\frac{\gamma_0}{\beta_0}, \]

(32)

\[\langle A^2 \rangle_{\text{R, } \mu} \] being now the Euclidean condensate; and

\[\kappa_0 = \gamma_0 - \gamma_0, \]

(33)

as immediately follows from Eq. (23) if \(\kappa_0 \) is defined from

\[\frac{d}{d \ln \mu^2} \ln \tilde{Z}_{\kappa}(\mu^2) = -\kappa_0 \frac{\alpha(\mu)}{4\pi} + \ldots. \]

(34)

The following perturbative coefficients for the flavourless case,

\[\beta_0 = 11, \quad \beta_1 = 51, \quad \gamma_0 = \frac{13}{2}, \]

(35)

are universal, while coefficients in the MOM scheme, \(\beta_2 \) was computed in [3], and \(\gamma_1 \) and \(\gamma_2 \) in [13].
\[\beta_2 \simeq 4824, \quad \gamma_1 = \frac{29}{8}, \quad \gamma_2 = 960. \] (36)

In a recent paper [9] we computed \(\hat{\gamma}_0 \), from diagrams identical to these in fig. 2 (a) and (b); \(\kappa_0 \), defined in Eq. (33) can be computed from diagrams (c) and (d) in fig. 2 to give:

\[\hat{\gamma}_0 = \frac{3N_C}{4}, \quad \kappa_0 = -\frac{9N_C}{136}. \] (37)

We have proceeded to evaluate the diagrams for \(\kappa_0 \) in total analogy to the calculation of those for \(\hat{\gamma}_0 \). For instance, we turned the diagrams to be infrared-safe by considering a momentum flow incoming to the local operator. The details of the procedure can be found in ref. [9]. It should be noticed that \(\kappa_0 \ll \hat{\gamma}_0 \) and that, in practice, \(\kappa_0/\beta_0 \simeq 0 \) works as a good approximation to simplify Eq. (31). In other words, the scheme given by vacuum insertion factorization reveals itself to be coherent: leading logarithm corrections violating the factorization induce a very small running with renormalization scale for the factorized tree-level Wilson coefficient.

An important point is nevertheless to prove the assumption to work in order to obtain a good estimate of the Wilson coefficient for the asymmetric three-gluon Green function. To dig into this question, we have performed the same combined fits shown in ref. [9] for two and three points Green functions, at three loops for leading Wilson coefficients, to match lattice data taken from refs. [3, 13]. The Euclidean OPE formula for the two point Green function is, from ref. [9],

\[Z_{\text{MOM}}(k^2, a) = Z_{\text{MOM}}(\mu^2, a) c_0 \left(\frac{k^2}{\mu^2}, \alpha(\mu) \right) \times \left(1 + R(\mu) \left(\ln \frac{k^2}{\Lambda} \right) \frac{\gamma_0 + \hat{\gamma}_0}{\beta_0} \right)^{1/k^2}; \] (38)

where

\[\frac{Z_{\text{MOM}}(k^2, a)}{Z_{\text{MOM}}(\mu^2, a)} = k^2 G_R^{(2)}(k^2, \mu^2) + O(a^2), \] (39)

and

\[R(\mu) = \frac{6\pi^2}{\beta_0 (N_c^2 - 1)} \left(\ln \frac{\mu}{\Lambda} \right)^{\frac{\gamma_0 + \hat{\gamma}_0}{\beta_0}} \langle A^2 \rangle_{R, \mu}. \] (40)

The coefficient \(c_0(\frac{k^2}{\mu^2}, \alpha(\mu)) \) is taken now to be expanded at three loops in terms of the MOM scheme \(\alpha(k) \); i.e. it will verify the same differential equation as \(\gamma(\alpha) \) in Eq. (26) with the boundary condition which is apparent from Eq. (29). In the following, all the scale-dependent quantities will be shown at \(\mu = 10 \) GeV. Furthermore, we have checked that both the ratio of gluon condensate estimates and \(\Lambda_{\text{MS}} \) indeed do not depend on this last momentum scale. The quality of the fits as a function of a free exponent of \(\ln \left(\frac{k}{\Lambda} \right) \) in Eq. (41) has been explored and the results are shown in fig. 3(a). We can conclude from these results that the approach given by vacuum insertion factorization provides a good estimate of this exponent.
The results for two particular values of the exponent r in Fig. (a) are of interest for the sake of comparison. The case $r = -1$ corresponds to the formula proposed in ref. [7] to be matched to the lattice data: a perturbative three-loop formula + a term c/p^2, c being a constant. On the other hand, had we neglected the leading logarithm contributions, $\hat{\gamma}_0 = \gamma_0 = 0$, the exponent would be $r = 1$. It can be seen from Fig. (a) that both values of r generate rather less good fits to the lattice data.

Then, Eqs. (31,32) can be used to perform fits at two and three loops for the leading Wilson coefficients in order to estimate, from asymmetric three-gluon Green function, the gluon condensate. The results of such a fits, plotted in Fig. (b), are:

\[
\frac{\sqrt{\langle A^2 \rangle_{R,\mu}}}_{alpha} = 3.65(4) \quad \Lambda_{MS} = 283(15)\text{MeV} \quad \chi^2 = 1.95
\]

for the two loops fit, and
\[
\frac{\sqrt{\langle A^2 \rangle_{R,\mu}}}{\sqrt{\langle A^2 \rangle_{R,\mu}}} = 1.7(3) \quad \Lambda_{\overline{\text{MS}}} = 260(18) \text{MeV} \quad \chi^2 = 1.18
\]

for the three loops one.

The impressive improvement from two to three loops suggests that the approach presented in this work permits a reasonable approximation to the Wilson coefficient. The ratio decreases to almost two \(\sigma\)’s away from 1 and both estimates of \(\Lambda_{\overline{\text{MS}}}\) and of the gluon condensate turn to be close of the previous estimates obtained from the symmetric three-gluon Green function in ref. [9] (see table 1). The scheme in this work and that of ref. [9] differ only by the kinematics of the renormalization point. Such a different renormalization for Green functions implies a different renormalization of the gluon condensate. However, the discrepancy for estimates of \(\langle A^2 \rangle_R\) in the two works is expected not to be important as indeed can be seen in table 1. The comparison of these estimates, mainly the ones obtained from gluon propagator, strongly supports the claimed rather large contribution from the \(A^2\) condensate\([7–9]\) that might be in connection with the tachyonic gluon mass scale studied in ref. [11].

A negative hint regarding to previous results from the symmetric three-point Green function is nevertheless the higher central value of the ratio in Eq. (42) (1.2 in ref. [9]). In principle two possible sources of discrepancies could be expected: either three loops is still insufficiently accurate for the estimate of the perturbative part in the \(\overline{\text{MOM}}\) renormalization scheme, or there is a deviation from the assumed vacuum insertion (or factorization) approximation. Both effects would have a direct impact on the bigger ratio we obtain for asymmetric \(\overline{\text{MOM}}\) scheme. The very good agreement between the gluon condensates estimated from gluon propagator previously discussed seems to point out the factorization breaking as the major contributing factor. Still the ratio in Eq. (42) is only about two sigmas from 1, which is in our opinion a rather encouraging result. The \(\langle A^2 \rangle\) deduced from the propagator is in fair agreement with previous estimates, even though it is biased by the factorization hypothesis through the fit of \(\Lambda_{\overline{\text{MS}}}\) which combines the propagator and \(\alpha_S\). This good result of the propagator as well as fig. 3(a), suggests that our formula describing the power corrections to \(\alpha_S\) up to the leading logarithm yields a good approximation of the exact one.

A two-sided goal is thus achieved:

i) the results of ref. [8] turn out to be confirmed by the use of a slightly different renormalization scheme.

ii) The vacuum insertion factorization applied to condensates playing the game of the OPE for the asymmetric three-gluon Green function results in a compact prediction for its OPE power corrections. The coefficient of the power correction has been computed to the leading logarithm, and thus a most important source of systematic uncertainty for the estimate of \(\Lambda_{\overline{\text{MS}}}\) in ref. [7] is eliminated. The latter is a positive feature because the \(\beta\) function is perturbatively known at four loops in the asymmetric \(\overline{\text{MOM}}\) [14] and lattice evaluations, on the other hand, turn out to be statistically more precise in this last renormalization scheme.

A last consequence of this work and those from refs. [8]–[9]: they altogether lead to conclude that the Green functions methods, three-gluon vertex in particular, provide us with a reliable and precise enough estimate for the running coupling constant and \(\Lambda_{\overline{\text{MS}}}\), once power corrections are properly taken in consideration.

\(^3\)To estimate the discrepancy for the non-perturbative estimates of \(\langle A^2 \rangle_R\) we need to compute beyond leading logarithm corrections that is out of the scope of this work.
1 Acknowledgments

We strongly acknowledge Ph. Boucaud, A. Le Yaouanc, J.P. Leroy, J. Micheli and O. Péne for the fruitful comments and stimulating discussions held at the L.P.T. in Orsay. The authors are also indebted to J.A. Caballero and M. Lozano for reading carefully the manuscript. This work is supported in part by the European Community’s Human Potential Program under contract HPRN-CT-2000-00145, Hadrons Lattice QCD, the spanish Fundación Cámara and spanish DGICYT under contracts PB98-1111 and FPA2000-1592-C03-02.

References

For reviews and classic references see:

