Publication:
A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting

No Thumbnail Available
Publication date
2021-12-18
Reading date
Event date
Start date of the public exhibition period
End date of the public exhibition period
Advisors
Authors of photography
Person who provides the photography
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Time series forecasting has become indispensable for multiple applications and industrial processes. Currently, a large number of algorithms have been developed to forecast time series, all of which are suitable depending on the characteristics and patterns to be inferred in each case. In this work, a new algorithm is proposed to predict both univariate and multivariate time series based on a combination of clustering, classification and forecasting techniques. The main goal of the proposed algorithm is first to group windows of time series values with similar patterns by applying a clustering process. Then, a specific forecasting model for each pattern is built and training is only conducted with the time windows corresponding to that pattern. The new algorithm has been designed using a flexible framework that allows the model to be generated using any combination of approaches within multiple machine learning techniques. To evaluate the model, several experiments are carried out using different configurations of the clustering, classification and forecasting methods that the model consists of. The results are analyzed and compared to classical prediction models, such as autoregressive, integrated, moving average and Holt-Winters models, to very recent forecasting methods, including deep, long short-term memory neural networks, and to well-known methods in the literature, such as k nearest neighbors, classification and regression trees, as well as random forest.
Doctoral program
Related publication
Research projects
Description
Bibliographic reference
Information Sciences, vol 586, p. 611–627
Photography rights