Publication:
Approximate Efficient Solutions of the Vector Optimization Problem on Hadamard Manifolds via Vector Variational Inequalities

No Thumbnail Available
Publication date
2020-12-10
Reading date
Event date
Start date of the public exhibition period
End date of the public exhibition period
Authors
Ruíz-Garzón, Gabriel
Osuna-Gómez, Rafaela
Rufián-Lizana, Antonio
Advisors
Authors of photography
Person who provides the photography
Journal Title
Journal ISSN
Volume Title
Publisher
MPDI
Export
Research Projects
Organizational Units
Journal Issue
Abstract
This article has two objectives. Firstly, we use the vector variational-like inequalities problems to achieve local approximate (weakly) efficient solutions of the vector optimization problem within the novel field of the Hadamard manifolds. Previously, we introduced the concepts of generalized approximate geodesic convex functions and illustrated them with examples. We see the minimum requirements under which critical points, solutions of Stampacchia, and Minty weak variational-like inequalities and local approximate weakly efficient solutions can be identified, extending previous results from the literature for linear Euclidean spaces. Secondly, we show an economical application, again using solutions of the variational problems to identify Stackelberg equilibrium points on Hadamard manifolds and under geodesic convexity assumptions.
Doctoral program
Related publication
Research projects
Description
Bibliographic reference
Ruiz-Garzón, Gabriel, Rafaela Osuna-Gómez, Antonio Rufián-Lizana, and Beatriz Hernández-Jiménez. 2020. "Approximate Efficient Solutions of the Vector Optimization Problem on Hadamard Manifolds via Vector Variational Inequalities" Mathematics 8, no. 12: 2196. https://doi.org/10.3390/math8122196
Photography rights