Publication:
Synergistic activity of an OmpA inhibitor and colistin against colistin-resistant Acinetobacter baumannii: mechanistic analysis and in vivo efficacy

No Thumbnail Available
Publication date
2018-12-01
Reading date
Event date
Start date of the public exhibition period
End date of the public exhibition period
Advisors
Authors of photography
Person who provides the photography
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford Academic
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Objectives: Preventing bacterial contact with host cells can provide an additional approach to tackling MDR Acinetobacter baumannii. Recently, we identified AOA-2 as a potential blocker of A. baumannii outer membrane protein A without presenting bactericidal activity. Here, we aimed to study whether AOA-2 can increase the activity of colistin against colistin-resistant A. baumannii in vitro and in vivo. Methods: Reference and clinical A. baumannii strains susceptible and resistant to colistin (CST-S and CST-R) were used. Microdilution and time-kill curve assays were performed to determine the synergy between AOA-2 and colistin. SDS-PAGE assays with CST-S and CST-R outer membrane proteins and MALDI-TOF-TOF (MS-MS/MS) analysis were performed to determine the AOA-2 and colistin synergy mechanism. In a murine peritoneal sepsis model, the therapeutic efficacy of AOA-2 (10 mg/kg/24 h) in combination with a sub-optimal dose of colistin (10 mg/kg/24 h) against CST-R was evaluated by determining the bacterial load in tissues and blood, and mouse survival. Results: We showed that AOA-2 increased the in vitro colistin susceptibility of reference and clinical CST-S and CST-R strains. This combination also enhanced their killing activity after 24 h of drug exposure. This synergy is mediated by the overexpression of Omp25. In vivo, the combination of AOA-2 with colistin significantly reduced the bacterial load in tissues and blood, and increased mouse survival, compared with colistin monotherapy. Conclusions: We identified a novel class of antimicrobial agents that has proven to be effective in combination with colistin in an experimental model of severe infection by CST-R A. baumannii.
Doctoral program
Related publication
Research projects
Description
Bibliographic reference
Photography rights