Person:
Delgado Baquerizo, Manuel

Loading...
Profile Picture
First Name
Manuel
Last Name
Delgado Baquerizo
Affiliation
Universidad Pablo de Olavide
Department
Research Center
Area
Research Group
PAIDI Areas
PhD programs
Identifiers
UPO investigaScopus Author IDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Publication
    Plant footprint decreases the functional diversity of molecules in topsoil organic matter after millions of years of ecosystem development
    (Wiley Online Library, 2023-11-27) Sáez Sandino, Tadeo; Gallardo, Antonio; J. Eldridge, David; Asefaw Berhe, Asmeret; Doetterl, Sebastian; Delgado Baquerizo, Manuel
    Aim: Theory suggests that the diversity of molecules in soil organic matter (SOM functional diversity) provides key insights on multiple ecosystem services. We aimed to investigate how and why SOM functional diversity and composition change as topsoils develop, and its implications for key soil functions (e.g., from nutrient pool to water regulation). Location: We reported data on 16 soil chronosequences globally distributed in nine countries from six continents. Methods: SOM functional diversity and composition without mineral interference were measured using diffuse reflectance mid-infrared Fourier transform spectroscopy (DRIFT). We aimed to characterize the main environmental factors related to SOM functional diversity and composition. Also, we calculated the links among SOM functional diversity and key soil functions. Results: We found that SOM functional diversity declines after millions of years of soil formation (pedogenesis). We further showed that increases in plant cover and productivity led to a higher ratio of reduced (e.g., alkanes) over oxidized carbon forms (i.e., C: O-functional groups ratio), which was positively correlated to SOM functional diversity as soils age. Our findings indicated that the plant footprint (i.e., the accumulation of plant-derived material promoting the C: O-functional group ratio) would explain the reduction of SOM functional diversity as ecosystems develop. Moreover the dissimilarity in SOM composition consistently increased with soil age, with the soil development stage emerging as the main predictor of SOM dissimilarity across contrasting biomes. Main Conclusions: Our global survey contextualized the natural history of SOM functional diversity and composition during long-term soil development. Together, we showed how plant footprint drives the losses of SOM functional diversity with increasing age, which might provide a novel mechanism to explain typically reported losses in ecosystem functions during ecosystem retrogression.
  • Publication
    Data from: Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea
    (Oxford, 2013) Delgado Baquerizo, Manuel; Gallardo, Antonio; Wallenstein, Matthew D.; Maestre, Fernando T.
    An integrated perspective of the most important factors driving the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in natural ecosystems is lacking, especially in drylands. We evaluated how different climatic, abiotic, and nutrient-related factors determine AOA and AOB abundance in bare and vegetated microsites from grasslands throughout the Mediterranean Basin. We found a strong negative relationship between the abundance of AOA genes and soil fertility (availability of C, N, and P). Aridity and other abiotic factors (pH, sand content, and electrical conductivity) were more important than soil fertility in modulating the AOA/AOB ratio. AOB were more abundant under vegetated microsites, while AOA, highly resistant to stressful conditions, were more abundant in bare ground areas. These results suggest that AOA may carry out nitrification in less fertile microsites, while AOB predominate under more fertile conditions. Our results indicate that the influence of aridity and pH on the relative dominance of AOA and AOB genes is ultimately determined by local-scale environmental changes promoted by perennial vegetation. Thus, in spatially heterogeneous ecosystems such as drylands, there is a mutual exclusion and niche division between these microorganisms, suggesting that they may be functionally complementary. Abundance of amoA and amoB genes in soils from Stipa tenacissima grasslands along an aridity gradient in the Mediterranean Data on the abundance of amoA and amoB genes in soils from Stipa tenacissima grasslands along a Mediterranean aridity gradient (from Spain to Tunisia). The database also includes information about different soil variables and the abiotic characteristics of the sites surveyed. All the units and information about the variables are included in the "Metadata" spreadsheet. FEMS_dryad.xls
  • Publication
    Efectos del cambio climático sobre la dinámica del nitrógeno en zonas áridas a distintas escalas espaciales
    (2013) Delgado Baquerizo, Manuel; Maestre Gil, Fernando Tomás; Gallardo, Antonio
    A lo largo de este doctorado se llevaron a cabo una serie de experimentos de laboratorio y de campo para evaluar el impacto de distintos agentes de cambio ambiental global (en lo sucesivo cambio global) sobre el ciclo del nitrógeno en zonas áridas a distintas escalas espaciales (local, regional y global). En primer lugar llevamos a cabo un estudio observacional en 224 zonas áridas a nivel global, situadas en todos los continentes menos la Antártida, para evaluar los impactos del incremento de la aridez derivado del cambio climático sobre los ciclos biogequímicos del nitrógeno (N), carbono (C) y fósforo (P). Los resultados obtenidos indicaron que este aumento de la aridez conllevará una disminución del control biótico (ej. menor cobertura vegetal) y un incremento del abiótico (p. ej. mayor dominio de la meteorización mecánina) sobre los ciclos biogeoquímicos en las zonas áridas. De este modo, los nutrientes asociados a procesos biológicos como el C y N (p. ej. fotosíntesis, descomposición de materia orgánica y fijación de N atmosférico) disminuirán con el incremento de aridez, mientras que nutrientes como el P, asociados con procesos geoquímicos (p. ej. meteorización de la roca), se verán favorecidos, generando desacoples entre los ciclos biogeoquímicos del C, N y P. Debido a la fuerte dependencia estequiométrica que los seres vivos tienen sobre los ciclos biogeoquímicos del C, N y P, su desacople podría acarrear un impacto negativo sobre la producción primaria, la respiración o la descomposición de la materia orgánica a nivel global. En segundo lugar, evaluamos el papel de la vegetación como elemento modulador de los efectos del incremento de aridez que se espera en zonas áridas en respuesta al cambio climático sobre el N total disponible y la abundancia en el suelo de genes de bacterias (AOB) y arqueas (AOA) nitrificantes a lo largo de un gradiente regional mediterráneo (desde España a Túnez). Conforme aumentó la aridez en este gradiente, disminuyeron la disponibilidad total de N y el ratio AOB: AOA. Los micrositios con vegetación favorecieron un incremento de AOB, mientras que suelos desnudos favorecieron la abundancia de AOA, más resistentes al estrés ambiental. Los resultados obtenidos indican que la vegetación podría reducir los impactos del incremento de aridez derivado del cambio climático sobre el N disponible del suelo y los microorganismos implicados en la nitrificación, debido a la acumulación de matera orgánica que ésta promueve, y a los nichos que proporciona a diferentes grupos de bacterias y arqueas nitrificantes. Por último, evaluamos el papel de la costra biológica del suelo (CBS), comunidades dominadas por líquenes, musgos y cianobacterias, en la resistencia y resiliencia de variables del ciclo del N a cambios en temperatura, contenido de agua en suelo y en la disponibilidad de C, N y P a escala local mediante incubaciones en el laboratorio. En general, los suelos bajo CBS mostraron una mayor resistencia a los cambios en temperatura y una mayor resiliencia a las adiciones de C y N. Sin embargo, los cambios en humedad edáfica no afectaron a las variables del ciclo del N, sugiriendo que procesos tales como la mineralización en zonas áridas pueden ser llevados a cabo en un rango amplio de humedad. Posteriormente, llevamos a cabo un experimento en cámara de cultivo para evaluar el papel modulador de la CBS sobre el ciclo del N en respuesta a pequeños pulsos de agua (1% de la capacidad de campo), similares a los producidos por los eventos de rocío. La CBS favoreció una acumulación de N total disponible en suelo en respuesta a estos pequeños pulsos de agua, siendo el mecanismo descrito en este trabajo uno de los posibles responsables del incremento de los contenidos de N típicamente observado bajo la CBS en zonas áridas. En su conjunto, la investigación realizada en el marco de esta tesis doctoral, ha profundizado nuestro conocimiento sobre los papeles que juegan la costra biológica y la vegetación como moduladores de los impactos del cambio global sobre el ciclo del N en zonas áridas. Del mismo modo, concluimos que un incremento de aridez a nivel mundial podría llevar a un desacople de los ciclos del C, N y P en suelo en los ecosistemas más áridos, lo que posiblemente afectará a los procesos y servicios ecosistémicos que prestan estos ambientes. Asimismo, el trabajo realizado en esta tesis pone de manifiesto que el estudio de los impactos del cambio global requiere del entendimiento de atributos y procesos ecosistémicos ligados a distintas escalas espaciales, que van desde patrones generales ligados a escala global a los mecanismos y factores concretos que actúan a escalas regionales y locales.