Edelaar, Pim

Profesor/a Titular de Universidad
Profile Picture
First Name
Last Name
Universidad Pablo de Olavide
Biología Molecular e Ingeniería Bioquímica
Research Center
Research Group
Organización genómica, homeostasis y evolución
Biología y Biotecnología
PhD programs
Biodiversidad y Biología de la Conservación
UPO investigaORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 10
  • Publication
    Supplementary material 1 from: Luna A, Edelaar P, Shwartz A (2019) Assessment of social perception of an invasive parakeet using a novel visual survey method. NeoBiota 46: 71-89.
    (Pensoft Publishers, 2019-06-07) Luna, Álvaro; Edelaar, Pim; Shwartz, Assaf
    The perceptions of the general public regarding invasive alien species (IAS) are important in the prevention of future invasions and the success of management programmes. Here we use a novel visual method to investigate the perception of a charismatic IAS, the rose-ringed parakeet, across different stakeholders in Seville, Spain. Respondents were asked to select images of 10 bird species they would like to have present in their surroundings, out of 20 available images, including the parakeet and three other non-natives.
  • Publication
    Supplementary material 1 from: Strubbe D, White R, Edelaar P, Rahbek C, Shwartz A (2019) Advancing impact assessments of non-native species: strategies for strengthening the evidence-base. NeoBiota 51: 41-64.
    (Pensoft Publishers, 2019-11-06) Strubbe, Diederik; White, Rachel; Edelaar, Pim; Rahbek, Carsten; Shwartz, Assaf
    The numbers and impacts of non-native species (NNS) continue to grow. Multiple ranking protocols have been developed to identify and manage the most damaging species. However, existing protocols differ considerably in the type of impact they consider, the way evidence of impacts is included and scored, and in the way the precautionary principle is applied. These differences may lead to inconsistent impact assessments. Since these protocols are considered a main policy tool to promote mitigation efforts, such inconsistencies are undesirable, as they can affect our ability to reliably identify the most damaging NNS, and can erode public support for NNS management. Here we propose a broadly applicable framework for building a transparent NNS impact evidence base. First, we advise to separate the collection of evidence of impacts from the act of scoring the severity of these impacts. Second, we propose to map the collected evidence along a set of distinguishing criteria: where it is published, which methodological approach was used to obtain it, the relevance of the geographical area from which it originates, and the direction of the impact. This procedure produces a transparent and reproducible evidence base which can subsequently be used for different scoring protocols, and which should be made public. Finally, we argue that the precautionary principle should only be used at the risk management stage. Conditional upon the evidence presented in an impact assessment, decision-makers may use the precautionary principle for NNS management under scientific uncertainty regarding the likelihood and magnitude of NNS impacts. Our framework paves the way for an improved application of impact assessments protocols, reducing inconsistencies and ultimately enabling more effective NNS management.
  • Publication
    Data from: Behaviour-related DRD4 polymorphisms in invasive bird populations
    (Dryad, 2014-05-23) Mueller, Jakob C.; Edelaar, Pim; Carrete, Martina; Serrano, David; Potti, Jaime; Blas, Julio; Dingemanse, Niels J.; Kempenaers, Bart; Tella, José Luis
    It has been suggested that individual behavioural traits influence the potential to successfully colonize new areas. Identifying the genetic basis of behavioural variation in invasive species thus represents an important step towards understanding the evolutionary potential of the invader. Here, we sequenced a candidate region for neophilic/neophobic and activity behaviour - the complete exon 3 of the DRD4 gene - in 100 Yellow-crowned bishops (Euplectes afer) from two invasive populations in Spain and Portugal. The same birds were scored twice for activity behaviour while exposed to novel objects (battery or slice of apple) in captivity. Response to novel objects was repeatable (r = 0.41) within individuals. We identified two synonymous DRD4 SNPs that explained on average between 11% and 15% of the phenotypic variance in both populations, indicating a clear genetic component to the neophilic/neophobic/activity personality axis in this species. This consistently high estimated effect size was mainly due to the repeated measurement design, which excludes part of the within-individual nongenetic variance in the response to different novel objects. We suggest that the alternative alleles of these SNPs are likely introduced from the original population and maintained by weak or antagonistic selection during different stages of the invasion process. The identified genetic variants have not only the potential to serve as genetic markers of the neophobic/neophilic/activity personality axis, but may also help to understand the evolution of behaviour in these invasive bird populations.
  • Publication
    Morphological divergence among Spanish crossbill populations is in part explained by feeding on different pine species
    (Wiley, 2020) ALONSO, Daniel; FERNÁNDEZ, Blanca; Edelaar, Pim; ARIZAGA, Juan
    Crossbills (Loxia spp.) provide a classical avian model of ecological specialization on food resources. Previous studies have suggested that morphometric, genetic and vocal diversification among Common Crossbill Loxia curvirostra populations is better explained by ecological distance (use of different conifers) than by geographical distance, indicating that populations have diverged adaptatively. We tested for adaptive divergence in Iberian crossbills using bill and body size measurements of 6082 crossbills from 27 sites, each consisting of a dominant or single pine (Pinus) of four possible species. Crossbills using different pines differed significantly in body size and bill size and shape. There was no correlation between geographical and morphological distance among sampling sites, consistent with the hypothesis that the morphological divergence of Iberian crossbills is shaped by their ecological differences (foraging on alternative conifers) rather than geographical distance. However, for unknown reasons, Common Crossbills foraging on Pinus sylvestris in Iberia have on average much smaller bills than Parrot Crossbills Loxia pytyopsittacus feeding on the same pine species in northern Europe. The extent to which crossbills specialize on Iberian P. sylvestris remains to be established. Specialization on conifers with overlapping geographical distributions may be facilitated by matching habitat choice of crossbills as a function of their local intake rates.
  • Publication
    Experimental evidence that matching habitat choice drives local adaptation in a wild population.
    (The Royal Society Publishing, 2020) CAMACHO, Carlos; SANABRIA-FERNÁNDEZ, Alberto; BAÑOS-VILLALBA, Adrián; Edelaar, Pim
    Matching habitat choice is a unique, flexible form of habitat choice based on self-assessment of local performance. This mechanism is thought to play an important role in adaptation and population persistence in variable environments. Nevertheless, the operation of matching habitat choice in natural populations remains to be unequivocally demonstrated. We investigated the association between body colour and substrate use by ground-perching grasshoppers (Sphingonotus azurescens) in an urban mosaic of dark and pale pavements, and then performed a colour manipulation experiment to test for matching habitat choice based on camouflage through background matching. Naturally, dark and pale grasshoppers occurred mostly on pavements that provided matching backgrounds. Colour-manipulated individuals recapitulated this pattern, such that black-painted and white-painted grasshoppers recaptured after the treatment aggregated together on the dark asphalt and pale pavement, respectively. Our study demonstrates that grasshoppers adjust their movement patterns to choose the substrate that confers an apparent improvement in camouflage given their individual-specific colour. More generally, our study provides unique experimental evidence of matching habitat choice as a driver of phenotype–environment correlations in natural populations and, furthermore, suggests that performance-based habitat choice might act as a mechanism of adaptation to changing environments, including human-modified (urban) landscapes.
  • Publication
    Selection on individuals of introduced species starts before introduction.
    (Wiley, 2020) Baños-Villalba, Adrián; Carrete, Martina; Tella, José Luis; Blas, Julio; Potti, Jaime; Camacho, Carlos; Sega Diop, Moussa; Marchant, Tracy A.; Cabezas, Sonia; Edelaar, Pim
    Biological invasion is a global problem with large negative impacts on ecosystems and human societies. When a species is introduced, individuals will first have to pass through the invasion stages of uptake and transport, before actual introduction in a non-native range. Selection is predicted to act during these earliest stages of biological invasion, potentially influencing the invasiveness and/or impact of introduced populations. Despite this potential impact of pre-introduction selection, empirical tests are virtually lacking. To test the hypothesis of pre-introduction selection, we followed the fate of individuals during capture, initial acclimation, and captivity in two bird species with several invasive populations originating from the international trade in wild-caught pets (the weavers Ploceus melanocephalus and Euplectes afer). We confirm that pre-introduction selection acts on a wide range of physiological, morphological, behavioral, and demographic traits (incl. sex, age, size of body/brain/bill, bill shape, body mass, corticosterone levels, and escape behavior); these are all traits which likely affect invasion success. Our study thus comprehensively demonstrates the existence of hitherto ignored selection acting before the actual introduction into non-native ranges. This could ultimately change the composition and functioning of introduced populations, and therefore warrants greater attention. More knowledge on pre-introduction selection also might provide novel targets for the management of invasive species, if pre-introduction filters can be adjusted to change the quality and/or quantity of individuals passing through such that invasion probability and/or impacts are reduced.
  • Publication
    Estimation of additive genetic variance when there are gene-environment correlations: pitfalls, solutions and unexplored questions.
    (British Ecological Society, 2023) Munar_Delgado, Gabriel; Araya-Ajoy, Yimen; Edelaar, Pim
    1. Estimating the genetic variation underpinning a trait is crucial to understanding and predicting its evolution. A key statistical tool to estimate this variation is the animal model. Typically, the environment is modelled as an external variable independent of the organism, affecting the focal phenotypic trait via phenotypic plasticity. We studied what happens if the environment is not independent of the organism because it chooses or adjusts its environment, potentially creating non-zero genotype–environment correlations. 2. We simulated a set of biological scenarios assuming the presence or absence of a genetic basis for a focal phenotypic trait and/or the focal environment (treated as an extended phenotype), as well as phenotypic plasticity (the effect of the environment on the phenotypic trait) and/or ‘environmental plasticity’ (the effect of the phenotypic trait on the local environment). We then estimated the additive genetic variance of the phenotypic trait and/or the environment by applying five animal models which differed in which variables were fitted as the dependent variable and which covariates were included. 3. We show that animal models can estimate the additive genetic variance of the local environment (i.e. the extended phenotype) and can detect environmental plasticity. We show that when the focal environment has a genetic basis, the additive genetic variance of a phenotypic trait increases if there is phenotypic plasticity. We also show that phenotypic plasticity can be mistakenly inferred to exist when it is actually absent and instead environmental plasticity is present. When the causal relationship between the phenotype and the environment is misunderstood, it can lead to severe misinterpretation of the genetic parameters, including finding ‘phantom’ genetic variation for traits that, in reality, have none. We also demonstrate how using bivariate models can partly alleviate these issues. Finally, we provide the mathematical equations describing the expected estimated values.
  • Publication
    Biased movement drives local cryptic coloration on distinct urban pavements.
    (The Royal Society Publishing, 2019) Edelaar, Pim; BAÑOS-VILLALBA, Adrian; QUEVEDO, David P; ESCUDERO, Graciela; BOLNICK, Daniel I; JORDÁN-ANDRADE, Aida
    Explanations of how organisms might adapt to urban environments have mostly focused on divergent natural selection and adaptive plasticity. However, differential habitat choice has been suggested as an alternative. Here, we test for habitat choice in enhancing crypsis in ground-perching grasshoppers colonizing an urbanized environment, composed of a mosaic of four distinctly coloured substrates (asphalt roads and adjacent pavements). Additionally, we determine its relative importance compared to present-day natural selection and phenotypic plasticity. We found that grasshoppers are very mobile, but nevertheless approximately match the colour of their local substrate. By manipulating grasshopper colour, we confirm that grasshoppers increase the usage of those urban substrates that resemble their own colours. This selective movement actively improves crypsis. Colour divergence between grasshoppers on different substrates is not or hardly owing to present-day natural selection, because observed mortality rates are too low to counteract random substrate use. Additional experiments also show negligible contributions from plasticity in colour. Our results confirm that matching habitat choice can be an important driver of adaptation to urban environments. In general, studies should more fully incorporate that individuals are not only selective targets (i.e. selected on by the environment), but also selective agents (i.e. selecting their own environments).
  • Publication
    A generalised approach to the study and understanding of adaptive evolution.
    (Wiley, 2023) Edelaar, Pim; Otsuka, Jun; Luque, Victor J.
    Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.
  • Publication
    Appreciating the multiple processes increasing individual or population fitness.
    (Cell Press, 2019) Edelaar, Pim; Bolnick, Daniel I.
    Natural selection results in adaptation for populations, not individuals. Yet environmental change can reduce the expected fitness of an individual. Selection will favor the evolution of traits that allow individuals to proactively compensate for such reduced fitness. Although several well-known processes can achieve this goal, they are still often neglected and often not clearly distinguished. To facilitate greater attention to the full range of processes by which individuals can increase their fitness, we present a classification scheme that integrates these: phenotypic change, selection of the environment, and adjustment of the environment. We outline how these individual-level processes relate to natural selection and population-level fitness. This framework may help to guide research (and teaching) about how individuals and populations may respond to environmental change.