Person:
Merino, Luis

Profesor/a Titular de Universidad
Loading...
Profile Picture
First Name
Luis
Last Name
Merino
Affiliation
Universidad Pablo de Olavide
Department
Deporte e Informática
Research Center
Area
Ingeniería de Sistemas y Automática
Research Group
PAIDI Areas
PhD programs
Identifiers
UPO investigaORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Publication
    An extension of GHMMs for environments with occlusions and automatic goal discovery for person trajectory prediction
    (IEEE, 2015) Pérez-Hurtado, Ignacio; Capitán, Jesús; Caballero, Fernando; Merino, Luis
    Robots navigating in a social way should use some knowledge about common motion patterns of people in the environment. Moreover, it is known that people move intending to reach certain points of interest, and machine learning techniques have been widely used for acquiring this knowledge by observation. Learning algorithms such as Growing Hidden Markov Models (GHMMs) usually assume that points of interest are located at the end of human trajectories, but complete trajectories cannot always be observed by a mobile robot due to occlusions and people going out of sensor range. This paper extends GHMMs to deal with partial observed trajectories where people's goals are not known a priori. A novel technique based on hypothesis testing is also used to discover the points of interest (goals) in the environment. The approach is validated by predicting people's motion in three different datasets.
  • Publication
    Ciencia Internacional en la UPO
    (2018) Aram, Bethany; Marchena Fernández, Juan; Gutiérrez Montoya, Nayibe; Gruart, Agnès; Delgado-García, José María; Gómez Skarmeta, José Luis; Merino, Luis; Navas, Fátima; Escribano Páez, José Miguel; Pérez-García, Manuel; Monreal-Gimeno, M Carmen; Artal-Sanz, Marta; Muñoz Ruiz, Manuel Jesús; Moral Martos, Francisco; Málvarez, Gonzalo; Márquez-Ruiz, Javier; Martínez-Álvarez, Francisco; Calero, Sofia 
    La Biblioteca/CRAI acogió desde el 26 de febrero al 7 de marzo de 2018 la exposición "Ciencia Internacional en la UPO" organizada por el Vicerrectorado de Investigación y Transferencia de Tecnología de la Universidad y que pretende mostrar la investigación de excelencia que se desarrolla en la Olavide en el marco de Programas Internacionales de I+D+i. La muestra estaba constituida por una selección de proyectos internacionales de investigación liderados por la UPO o con participación relevante de sus investigadores/as, de distintas temáticas como la Historia, la Biología, la Ciencia de Materiales, las Neurociencias, los Estudios de Género, la Robótica o el Clima.
  • Publication
    Data fusion in ubiquitous networked robot systems for urban services
    (Springer-Verlag, 2012-06-16) Merino, Luis; Gilbert, Andrew; Capitán, Jesús; Bowden, Richard; Illingworth, John; Ollero, Aníbal
    There is a clear trend in the use of robots to accomplish services that can help humans. In this paper, robots acting in urban environments are considered for the task of person guiding. Nowadays, it is common to have ubiquitous sensors integrated within the buildings, such as camera networks, and wireless communications like 3G or WiFi. Such infrastructure can be directly used by robotic platforms. The paper shows how combining the information from the robots and the sensors allows tracking failures to be overcome, by being more robust under occlusion, clutter, and lighting changes. The paper describes the algorithms for tracking with a set of fixed surveillance cameras and the algorithms for position tracking using the signal strength received by a wireless sensor network (WSN). Moreover, an algorithm to obtain estimations on the positions of people from cameras on board robots is described. The estimate from all these sources are then combined using a decentralized data fusion algorithm to provide an increase in performance. This scheme is scalable and can handle communication latencies and failures. We present results of the system operating in real time on a large outdoor environment, including 22 nonoverlapping cameras, WSN, and several robots.